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Abstract

An optimal control algorithm for generating purely phase-modulated pulses is derived. The methodology is applied to obtain broad-
band excitation with unprecedented tolerance to RF inhomogeneity. Design criteria were transformation of Iz fi Ix over resonance off-
sets of ±25 kHz for constant RF amplitude anywhere in the range 10–20 kHz, with a pulse length of 1 ms. Simulations transform Iz to
greater than 0.99 Ix over the targetted ranges of resonance offset and RF variability. Phase deviations in the final magnetization are less
than 2–3� over almost the entire range, with sporadic deviations of 6–9� at a few offsets for the lowest RF (10 kHz) in the optimized
range. Experimental performance of the new pulse is in excellent agreement with the simulations, and the robustness of the excitation
pulse and a derived refocusing pulse are demonstrated by insertion into conventional HSQC and HMBC-type experiments.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Although dual compensation for RF inhomogeneity/
miscalibration and chemical-shift offset effects in excitation
has been difficult to achieve [1–13], broadband excitation
by optimized pulses (BEBOP) [14–17] has been shown to
be an effective solution for RF tolerance of 10–15%, which
is typical of calibrated pulses output by high-quality RF
probes. Broadband in this context refers to a pulse capable
of uniformly exciting the entire 13C chemical-shift range at
field strengths of 800–900 MHz, requiring a bandwidth of
40–50 kHz.
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Broadband pulses which tolerate an even higher degree
of RF inhomogeneity could also be useful. NMR-spectros-
copy on natural products is one potential application. For
example, calibration of 13C-pulses is extremely difficult for
natural abundance samples at very low concentration.
Moreover, significant variations in pulse length can be
caused by varying salt concentrations. Sufficient RF toler-
ance would remove the need for painstakingly accurate
pulse calibrations, which are also important for optimal
sensitivity of many complex multidimensional experiments
or the automated acquisition of a large number of strongly
differing samples.

Encouraged by the success of optimal control theory in
designing broadband pulses with outstanding performance,
we therefore consider a problem which has been resistant
to a successful solution: nearly calibration-free broadband
excitation. To accommodate the majority of 13C probes in
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use, the pulse should operate equally well for a peak RF
output anywhere in the range 10–20 kHz (25–12.5 ls pulse
width).

In addition, while the BEBOP pulses obtained to date
exhibit nearly ideal performance, their rapid and extreme
amplitude jumps can require some monitoring and adjust-
ment of system hardware, primarily with regard to amplifi-
er linearity and accurate output of the waveform
generators. We have demonstrated that this is not a prob-
lem for modern NMR-consoles with linearized amplifiers
and fast amplitude and phase switching times. For
NMR-spectrometers equipped with non-linearized amplifi-
ers, however, constant amplitude pulses would be more
convenient.

For a given bandwidth and tolerance to RF variability,
an optimal control algorithm which allows amplitude/
phase modulation and limits the maximum RF amplitude
produces a purely phase-modulated pulse when the pulse
length is reduced below a certain level [16]—the algorithm
pins the RF to its maximum allowed value at all times
during the pulse in attempting to optimize pulse perfor-
mance. For longer pulse lengths, the algorithm is able
to converge to a solution using lower, time-variable values
of the amplitude without having to consider larger RF
values. Instead of reducing pulse length by trial-and-error
until constant amplitude pulses are found, it is more effi-
cient to derive them directly, which is the topic of the next
section. The results of the new procedure for deriving
phase-modulated pulses and their applications in HSQC
and HMBC-type experiments are discussed in a following
section.

2. Theory and methods

Details of the optimal control procedure, as it relates to
broadband excitation in NMR, and the algorithms devel-
oped so far are discussed in [14,15,17]. More general infor-
mation on broadband excitation [1–13], optimal control
theory [18–21], and its use in NMR [22–25] can be found
in the references. In this section, we derive the modifica-
tions to our previous treatment that are required to maxi-
mize the performance of a pulse modulated only in phase.

2.1. Optimal control theory: application to excitation

We first provide a synopsis describing those aspects of
the methodology that are unaffected by the transition to
a phase-modulated pulse. During the time interval [t0, tp],
we seek to transfer initial magnetization M ðt0Þ ¼ ẑ to the
target final state F ¼ x̂ for a specified range of chemical-
shift offsets and a desired degree of tolerance to RF
inhomogeneity or miscalibration. The trajectories M (t)
are constrained by the Bloch equation

_M ¼ xe �M . ð1Þ
The effective RF field xe in angular frequency units (rad/s)
can be written in the rotating frame as
xe ¼ x1ðtÞ½cos /ðtÞx̂þ sin /ðtÞŷ� þ Dxẑ

¼ xrfðtÞ þ Dxẑ;
ð2Þ

which encompasses any desired modulation of the ampli-
tude x1 and phase / of the pulse.

Constraints on the optimization are incorporated into
the formalism using the technique of Lagrange multipliers
(see for example, [26]), with a multiplier ki for each con-
straint. The vector Bloch equation thus introduces a vector
Lagrange multiplier k. Some suitable measure of pulse per-
formance, the cost function U, is then defined as the object
of the optimization. One then finds that k must also obey
the Bloch equation at each time for the cost to be opti-
mized, with its value at the end of the interval given by
k (tp) = oU/oM.

2.1.1. Application to phase modulation

Since optimal control theory is a generalization (e.g.,
[21]) of the classical Euler–Lagrange formalism, a ‘‘hamil-
tonian’’ h can be defined in terms of k and the constraints
on the possible trajectories as

h ¼ k � ðxe �MÞ ¼ xe � ðM � kÞ. ð3Þ

In terms of general controls ui, the final conditions that are
necessary for the cost to be optimal are that

@h
@ui
¼ 0 ð4Þ

at all times throughout the evolution. If Eq. (4) is not equal
to zero, it represents a gradient giving the proportional
adjustment to make in the controls for a more optimal
solution.

In our previous work, the controls were equal to xe, giv-
ing oh/oxe = M · k. As noted in the previous section, since
very few spectrometers implement frequency modulation
directly, the controls were restricted to the transverse,
(x,y), components represented by xrf in Eq. (2). The z com-
ponent of M · k was therefore irrelevant in adjusting the
controls.

For a constant amplitude phase-modulated pulse, x1 in
Eq. (2) is time-independent and the only control is the
phase, /. Plugging xe from Eq. (2) into Eq. (3) and setting
oh/o/ = 0 gives, together with the previous conditions on
the evolution of M and k, the following requirements to
optimize the cost:

_M ¼ xe �M; Mðt0Þ ¼ ẑ ð5Þ
_k ¼ xe � k; kðtpÞ ¼ @U=@M ð6Þ
xrf � ðkMz �MkzÞ ¼ 0. ð7Þ
2.1.2. The cost function
The dot product U = M (tp) Æ F is one possible choice for

quantifying the degree to which M (tp) = F, which gives
k (tp) = F from Eq. (6) [14–16]. For alternative cost func-
tions see Ref. [17]. For any of the cost functions, the pro-
cedure is the same–M and k obey the Bloch equation,
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and they can be calculated at each time for a given pulse.
Mopt (t) will satisfy the stationary condition of Eq. (7) when
kopt (t) = 0. For a non-optimal pulse, the gradient calculat-
ed in Eq. (7) for each time point of the two trajectories
gives the proportional adjustment to make in the pulse
phase /.

2.2. Numerical algorithm

The procedure for optimizing the cost can be incorpo-
rated in the following algorithm:

(i) Choose an initial RF sequence xð0Þe .
(ii) Evolve M forward in time from the initial state ẑ.

(iii) Evolve k backward in time from the target state x̂.
(iv) /(k+1)(t) fi /(k)(t) + �xrf Æ (kMz �Mkz).
(v) Repeat steps (ii)–(iv) until a desired convergence of U

is reached.

Since the optimization is performed over a range of
chemical-shift offsets and variations in the peak RF cali-
bration, the gradient used in step (iv) is averaged over
the entire range. Additional details of the averaging proce-
dure and the choice of stepsize � for incrementing the phase
in each iteration are described in [14,15].

3. Results and discussion

In our work to date, we have focused on demonstrat-
ing the capabilities of optimal control theory for NMR
pulse design, establishing the effectiveness of the algo-
rithms and the viability of the resulting pulses. The exci-
tation pulse is a simple example that characterizes
optimal control behavior in NMR while minimizing its
convolution with any particular application. This charac-
terization establishes a foundation for pursuing other
applications. We first assess the performance of the cali-
bration-free phase-modulated pulse derived by the new
algorithm, then consider applications to two commonly
used pulse sequences, illustrating the advantages of the
new pulse.
Fig. 1. Phase modulation of the constant amplitude 1 ms PM-BEBOP pulse. T
range of resonance offsets for constant RF amplitude set anywhere in the ran
3.1. Pulse performance

Pulse performance, in general, depends on the pulse
duration, with pulses of sufficient length giving the optimal
control algorithm the flexibility to obtain practically ideal
results in many cases. In addition, excitation (and inver-
sion) efficiency undergoes a steep drop in performance
below a minimum pulse length [16], which depends on
the parameters defining the optimization. Increasing pulse
length significantly above this minimum provides only
marginal improvement, so the shortest pulse that provides
acceptable performance is the goal.

Choosing 2 ms for the pulse length initially and opti-
mizing with the new algorithm provided a pulse that
transforms 99.9% of initial z magnetization to within
1.5� of the x-axis over a resonance offset range of
50 kHz for a constant RF amplitude anywhere in the
range 10–20 kHz (results not shown). This nearly ideal
performance can be traded for shorter pulse length. Since
performance drops rapidly for shorter pulses, we find
that overdigitizing the initial waveform used in the opti-
mal control procedure gives the algorithm additional
flexibility in finding the best solution, as discussed in
Ref. [17]. Every other point of the resulting pulse is used
as the initial input for generating a new pulse, and this
procedure is continued until a minimal digitization with
acceptable performance is reached. For a 1 ms pulse
length, 320,000 random phases were input initially
(�3 ns per time step). Such a large number of parameters
would be extremely difficult, if not impossible, to opti-
mize using conventional methods. This ‘‘breeder’’ pulse
resulted in the final 625-point pulse shown in Fig. 1.

3.1.1. Comparison to existing pulses

Although adiabatic pulses accommodate a wide range of
peak power levels, the exceptional bandwidth of adiabatic
inversion for a given peak RF amplitude does not translate
to excitation. The orientation of the effective RF field at the
end of an adiabatic excitation pulse, which, ideally gives
the location of the magnetization, is not in the transverse
plane for non-zero chemical-shift offset. Other existing
his pulse performs the point-to-point transformation Iz fi Ix over a 50 kHz
ge 10–20 kHz (see Figs. 2 and 3).



Fig. 2. Simulated performance of (A and B) a hard excitation pulse and
(C) the optimized PM-BEBOP pulse of Fig. 1 plotted as a function of RF
amplitude m1 and resonance offset m0. The nominal RF amplitude is
15 kHz. Theoretical transfer from initial z magnetization M0 to (A and C)

Mx and (B) the transverse plane
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

x þM2
y

q
is shown. White areas

correspond to transfers larger than 99.5%, light gray to transfer between
99.0 and 99.5% and darker gray to transfer below 99.0%. While transfer to
Mx for the hard pulse has very limited bandwidth and tolerance to RF
variation (A), the phase modulated BEBOP pulse shows almost perfect
excitation over the whole offset and RF amplitude range shown. In readily
phase-compensated pulse sequences the transfer of initial magnetization to
the transverse plane is important, as shown in (B) for the hard pulse. The
performance of the hard pulse in this case is strongly improved compared
to its transfer properties to Mx, but there is significant loss per applied
pulse for amplitudes lower than the nominal 15 kHz.
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excitation pulses [1–13] provide only limited dual compen-
sation for RF variability and resonance offset. Moreover,
they have not demonstrated a performance advantage over
phase-compensated hard pulses, so hard 90� pulses could
be considered the benchmark for broadband performance
in sequences that are readily phase-corrected.

The theoretical performance of the optimized pulse and
of a conventional hard pulse are illustrated in Fig. 2. Con-
tours of resulting x magnetization, Mx, are plotted as func-
tions of resonance offset and RF amplitude of the pulses
(Figs. 2A and C). Similarly, the contours of magnetization

in the transverse plane,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

x þM2
y

q
, are shown for the hard

pulse in comparison (Fig. 2B). The Mx magnetization excit-
ed by a hard pulse is strongly dependent on offset, with a nar-
row bandwidth of approximately ±2.5 kHz for greater than
99% excitation, using a calibrated RF amplitude of 15 kHz
(Fig. 2A). In most applications, however, excitation pulses
are used around evolution periods, in which case phase devi-
ations can be compensated by a first order phase correction.
Hence, the excitation profile of transverse magnetization,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
x þM2

y

q
, is more appropriate for a comparison, resulting

in a bandwidth of ±12.5 kHz with larger than 99% excita-
tion for a calibrated 15 kHz hard pulse (Fig. 2B).

Regardless of the application, hard excitation pulses are
significantly affected by RF miscalibrations. On resonance,
where the performance is best, only 90% of magnitization is
brought into the transverse plane if the pulse amplitude
deviates by 25% from its nominal value. For the optimized
phase-modulated BEBOP (PM-BEBOP) pulse of 1 ms
duration, the excited magnetization Mx is better than 99%
of the initial z magnetization, M0, over the targetted factor
of two variation in the nominal RF delivered by the coil and
resonance offsets of ±25 kHz, as shown in Fig. 2C. Phase
deviations over the optimization window are typically less
than 2–3� (cf. Fig. 3), which is sufficient for the majority
of NMR-experiments. In applications with a high dynamic
range, as for example in 1H-NOESY experiments, this
phase behavior might not be adequate. In such cases, pulses
with more stingently optimized phase behavior (and shorter
pulse length) can be used [15,17], with the proviso that they
also require more accurate calibration.

Experimental excitation profiles were implemented on
Bruker Avance spectrometers equipped with SGU units
for RF control and linearized amplifiers. For testing the
performance of the phase modulated BEBOP pulses, a
sample of 99.96 % D2O was doped with CuSO4 to a final
T1 relaxation time of �500 ms. To reduce effects of B1-field
inhomogeneity, approximately 40 ll of this solution was
placed in a Shigemi limited volume tube. The maximum
RF amplitude was calibrated using a square shaped pulse.
Offset profiles were then obtained by varying the offset of
the shaped pulses from �27 kHz to 27 kHz in steps of
1 kHz. To also monitor the B1-field dependence of the
pulses, the experiments were repeated with ±1, ±2, and
±3 dB attenuation relative to a central RF amplitude,



Fig. 3. The phase behavior of the optimized PM-BEBOP pulse of Fig. 1 is
plotted as a function of RF amplitude m1 and resonance offset m0. Phase
deviations from an ideal excitation pulse are shown in 1� steps in different
shades of gray (see scale to the right). For almost the entire range of offsets
and RF amplitudes, the phase is less than 2–3�, with minor distortions in
the 6–9� range at the lowest RF (10 kHz) in the optimized range.

Fig. 4. Excitation profiles for the residual HDO signal in a sample of
99.96% D2O are displayed as a function of resonance offset (1 kHz
increments) and RF power levels applied using the 1 ms PM-BEBOP pulse
of Fig. 1. The pulse was applied with constant amplitudes of 10 kHz
(+3 dB), 11.2 kHz (+2 dB), 12.6 kHz (+1 dB), 14.1 kHz (0 dB), 15.8 kHz
(�1 dB), 17.8 kHz (�2 dB), and 20 kHz (�3 dB). The experimental
performance of the pulse is in excellent agreement with theory, producing
practically perfect excitation, Mx > 0.99M0, over ±25 kHz for RF
variability within ±33.3% (�6 dB) of the nominal value 15 kHz.

T.E. Skinner et al. / Journal of Magnetic Resonance 179 (2006) 241–249 245
corresponding to RF amplitudes of 10.0, 11.2, 12.6, 14.1,
15.8, 17.8, and 20.0 kHz. The results are shown in Fig. 4.
The experimental data provide an excellent match with the-
ory and represent a considerable improvement over the
maximum attainable performance of a phase-corrected
hard pulse, opening the door to practically calibration-free
excitation pulses.

3.2. 2D applications

The benefits of using PM-BEBOP in practical NMR
applications are well-illustrated by 13C–1H correlated exper-
iments, as e.g., HSQC or HMBC. An important element of
these types of experiment is the sub-sequence 90�–t1–90�
applied to the 13C spins to encode the frequencies for the first
dimension of the 2D spectrum. The linear phase roll of a
hard 90� pulse is commonly eliminated from the first spectral
dimension by subtracting a constant time (equal to 4t90/p)
from t1. Details of the mechanism responsible for this ‘‘reph-
asing’’ are straightforward, but it suffices to note merely that
one can expect approximately phase-corrected performance
from hard 90� pulses in HSQC-type sequences, at least in the
absence of RF inhomogeneity.

Two-dimensional spectra were recorded on a Bruker
Avance 500 spectrometer using a �500 mM menthol sam-
ple dissolved in CDCl3. Standard HSQC [28,29] and
HMBC experiments [30,31] were acquired with variations
in offset, RF amplitude, and the kind of pulses applied
on 13C nuclei. The maximum RF amplitude of the Bruker
TXI probehead used corresponds to 14.3 kHz (equivalent
to a 90� pulse of 17.5 ls). To avoid maximum power for
the shaped pulses, we used slightly lower RF amplitudes
of 12 kHz for the nominal power. This scales to a 1.2 ms
PM-BEBOP pulse covering ±20 kHz bandwidth (rather
than the 15 kHz nominal amplitude of the 1 ms pulse
shown in Fig. 1, which has a bandwidth of ±25 kHz).
The total sweep width needed for covering the 13C-spectra
of menthol on a 500 MHz spectrometer is �8 kHz. We
therefore, decided to record three spectra with 0, 8, and
16 kHz offset relative to the center of the 13C-spectral
width, leading to a coverage of offsets corresponding to
�4–4, 4–12, and 12–20 kHz, respectively. Since spectral
width and offsets are matched, no folding artefacts were
observed.

Based on the procedure described in [27], we also con-
structed a 2.4 ms, 180� universal rotation pulse consisting
of the original PM-BEBOP pulse appended to its phase
and time-reversed version, resulting in a pulse with an
active bandwidth identical to the pulse from which it orig-
inates. The performance of the resulting inversion/refocus-
ing pulse with respect to offset and RF amplitude is shown
in Fig. 5 in comparison to a hard 180� pulse. To test the
robustness of the pulse sequences with respect to variation
in RF amplitude, hard and shaped pulses were set to 8, 10,
and 12 kHz RF amplitude.

For each combination of offset and RF amplitude, three
HSQC and three HMBC experiments were acquired using



Fig. 5. Simulated refocusing performance is shown as a function of RF amplitude m1 and resonance offset m0 for a hard 180� pulse generating the
transformations (A) �Mx fi Mx, (B) My fi My, and (C) Mz fi �Mz. The corresponding performance of a shaped 180� pulse constructed from the
optimized PM-BEBOP pulse of Fig. 1 using the procedure described in [27] is shown in the second column of figures. The nominal RF amplitude is 15 kHz
in all cases. White areas correspond to transfers larger than 98.0%, light gray to transfer between 95.0% and 98.0%, gray to lower positive transfer, and
dark gray to transfer where the resulting magnetization is still negative. While refocusing for the hard pulse has very limited bandwidth and tolerance to
RF variation, the pulse constructed from the PM-BEBOP pulse shows very good refocusing properties over the whole offset and RF amplitude range
shown.
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only hard pulses, hard excitation but shaped PM-BEBOP-
based 180� pulses, and only shaped PM-BEBOP excitation
and PM-BEBOP-based refocusing pulses, respectively, on
13C nuclei (Fig. 6). In the series of experiments with shaped
excitation pulses, the 90� flip back pulse after the 13C evo-
lution period was replaced by the time-reversed PM-BE-
BOP pulse for optimal transfer Mx fi Mz. In Figs. 7 and
8, representative slices of all 2D-spectra acquired through



A

B

Fig. 6. HSQC pulse sequences used for the comparison of signal
intensities shown in Fig. 7. The reference HSQC based on hard pulses is
shown in (A). In the sequence shown in (B) all 13C-pulses are replaced by
PM-BEBOP-based excitation and refocusing pulses. PM-BEBOP pulses
are schematically shown as rectangular pulses (representing constant RF
amplitude) containing a wavy line (representing phase-modulation). Phase
and/or time reversals are illustrated by vertical and/or horizontal
mirroring of the wavy lines in the boxes, respectively. Phases are u1 = x,
u2 = x,�x, u3 = x,x,�x,�x, u4 = x,x,x,x,�x,�x,�x,�x, urec = x,�x, x,
�x, �x, x, �x, x. G1, u1, u2, and urec are cycled ± according to echo/
antiecho acquisition scheme. If not stated otherwise, all pulses have x

phase.
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the signals corresponding to C6H6
eq and C1H7, respective-

ly, are shown. The slices taken from HMBC spectra are
shown in magnitude mode.

On resonance and with correctly calibrated hard pulses,
the performance of all three HSQC experiments is more or
less identical (cf. Fig. 7A). However, as soon as either RF
amplitude or resonance offsets are changed, the signal
intensity of the hard pulse HSQC decreases substantially,
and at offsets larger than 15 kHz the signal falls to �0
(cf. Fig. 7C–C00). In addition, large phase rolls are observed
in the indirect dimension.

Most of the signal loss is due to the bad performance of
the uncompensated hard 180� pulses. As expected from
previous reports [12,32–34], replacing the hard inversion
pulses with broadband refocusing pulses recovers most of
the signal over the operating bandwidth of the pulse. The
PM-BEBOP-based refocusing pulse provides the same
bandwidth and tolerance to RF inhomogeneity or miscali-
bration as the excitation pulse used in its construction, so
that for RF amplitudes 3.5 dB lower than the nominal val-
ue and an 8 kHz offset (cf. Fig. 7B00), the signal intensity is
practically identical to the on resonance case with calibrat-
ed RF amplitude.

In comparison, it is difficult to find broadband adiabat-
ic refocusing pulses that achieve the performance of the
new pulse shown in Fig. 5. To work properly, they must
be sufficiently adiabatic, which is determined by pulse
length, peak RF, and the frequency sweep range of the
pulse (related to bandwidth). Typical adiabatic pulse
shapes require pulse lengths of 3–4 ms to refocus over a
20% smaller bandwidth and smaller range of RF toler-
ance. The best adiabatic refocusing we could find (match-
ing the 98% refocusing of Fig. 5) was achieved with
WURST–20 [35]. Using a 0.5 ms pulse with a 94 kHz fre-
quency sweep as the constituent inversion pulse of the 3p
procedure described in [12] resulted in a 2 ms refocusing
pulse which covered the full 50 kHz bandwidth for peak
RF in the range 11.5–22 kHz.

Nevertheless, for larger offsets and lower RF ampli-
tudes the overall intensity of experiments is also affected
by the decreased performance of hard excitation pulses.
At an offset of 16 kHz and a 3.5 dB miscalibrated RF
amplitude, for example, the signal intensity is reduced
by about one third (Fig. 7C00). When all carbon pulses
are replaced by PM-BEBOP excitation and refocusing
pulses, the signal intensity is restored also in these cases
and virtually identical performance for the HSQC exper-
iment is observed for the whole range of offsets and RF
amplitude settings shown in Fig. 7.

The set of experiments recorded for the state of the art
HMBC basically lead to identical results with respect to
signal intensities (cf. Fig. 8). PM-BEBOP pulses appear
to have a utility for excitation and refocusing pulses similar
to adiabatic pulses for RF-compensated inversion, with
almost no variation in pulse performance over the targetted
offset and RF amplitude ranges.

4. Conclusion

We have derived an optimal control algorithm for
designing purely phase-modulated pulses. Compared to
earlier BEBOP pulses, advantages include simplified
implementation and improved practical performance,
since the output fidelity of phase modulation does not
depend on amplifiers with linear amplitude. We derived
a 1 ms pulse capable of uniformly exciting the entire
200 ppm 13C chemical-shift range of a potential 1 GHz
spectrometer for a peak RF amplitude anywhere in
the range 10–20 kHz. This provides an unprecedented
combination of bandwidth and tolerance to RF inho-
mogeneity. For probes which have a peak RF in this
range, which should cover the vast majority of probes,
one needs only to set the RF slightly lower than the
maximum power (typically 3 dB attenuation) to ensure
complete excitation. This removes a significant obstacle
to automated NMR, which has been the need to accu-
rately calibrate the constituent RF pulses in complex
2D pulse sequences. As noted, adiabatic pulses are tol-
erant to a wide range of RF miscalibration only as an
inversion pulse. HSQC and HMBC experiments were
provided to show the practical benefits of the new
pulse.

BEBOP and PM-BEBOP pulses obtained to date can be
downloaded in Bruker and Varian formats from http://
www.org.chemie.tu-muenchen.de/people/bulu/.

http://www.org.chemie.tu-muenchen.de/people/bulu/
http://www.org.chemie.tu-muenchen.de/people/bulu/
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Fig. 8. Traces through the C1-H7 signal in HMBC spectra analogous to the traces of HSQC spectra shown in Fig. 7. The replacement of hard 180� pulses
by the BEBOP-constructed 180� pulse significantly improves performance (see also [12,32–34]). Further improvements can be seen if both PM-BEBOP
excitation and PM-BEBOP-based refocusing pulses are applied to 13C: signal intensities basically stay constant for all RF amplitudes and offsets recorded.

A B C

A' B' C'

A'' B'' C''

Fig. 7. Traces through the C6-H6
eq signal of several HSQC spectra of menthol in CDCl3 recorded with various offsets, RF amplitudes, and 13C pulses. RF

amplitudes were 12 kHz (A,B,C), 10 kHz (A 0, B 0, C 0), and 8 kHz (A00, B00, C00) and on-resonant offsets were set to 0 kHz (A–A00), 8 kHz (B–B00), and 16 kHz
(C–C00) (see main text for details). For each offset and RF amplitude combination, the traces for three different HSQC experiments using different 13C-
pulses (see Fig. 6) are shown: only hard pulses (left), hard excitation and PM-BEBOP-based shaped 180� pulses (middle), and only PM-BEBOP excitation,
and PM-BEBOP-based refocusing pulses (right). For B00, 2D-regions are also shown for the three different experiments for a better demonstration of the
spectral quality. The circled signals correspond to the above traces. In the 2D-regions of spectra acquired using hard pulses, phase distortions can clearly
be seen. These phase distortions have been corrected for all traces shown above in order to have a fair comparison of the intensities present in the various
spectra.

248 T.E. Skinner et al. / Journal of Magnetic Resonance 179 (2006) 241–249



T.E. Skinner et al. / Journal of Magnetic Resonance 179 (2006) 241–249 249
Acknowledgments

T.E.S. acknowledges support from NSF Grant
CHE-0518174. B.L. thanks the Fonds der Chemischen
Industrie and the Deutsche Forschungsgemeinschaft
(Emmy Noether fellowship LU 835/1-3) for support.
S.J.G. acknowledges support from the Deutsche Fors-
chungsgemeinschaft for Grant Gl 203/4-2 and the Fonds
der Chemischen Industrie. N.K. acknowledges Darpa
Grant F49620-0101-00556.

References

[1] R. Freeman, S.P. Kempsell, M.H. Levitt, Radiofrequency pulse
sequences which compensate their own imperfections, J. Magn.
Reson. 38 (1980) 453–479.

[2] M.H. Levitt, Symmetrical composite pulse sequences for NMR
population inversion. I. Compensation of radiofrequency field inho-
mogeneity, J. Magn. Reson. 48 (1982) 234–264.

[3] M.H. Levitt, R.R. Ernst, Composite pulses constructed by a recursive
expansion procedure, J. Magn. Reson. 55 (1983) 247–254.

[4] R. Tycko, H.M. Cho, E. Schneider, A. Pines, Composite pulses
without phase distortion, J. Magn. Reson. 61 (1985) 90–101.

[5] M.H. Levitt, Composite pulses, Prog. Nucl. Magn. Reson. Spectrosc.
18 (1986) 61–122.

[6] A.J. Shaka, A.J. Pines, Symmetric phase-alternating composite
pulses, J. Magn. Reson. 71 (1987) 495–503.
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